KI-05 — Ker, Im, Rank–Nullity, classificazione
Usa la matrice di un'applicazione per studiarne nucleo, immagine e proprietà di iniettività o suriettività.
Axio
Se trovi tutti pivot possibili, stai forse osservando un isomorfismo!
Lap
1) KernelSolve: \(Tx=0\) → base(Ker), \(\dim(\ker T)\).
2) ImageBasis: RREF(\([T]\)) → colonne pivot = base(Im), \(\operatorname{rk}(T)\).
3) RankNullityCheck: \(\dim(V)=\operatorname{rk}+\text{null}\).
4) Classify: null=0 ⇒ iniettiva; rk=dim W ⇒ suriettiva; se \(\dim V=\dim W\) e bijettiva ⇒ isomorfismo (calcola \(T^{-1}\) con Gauss su \([T|I]\)).
Errori comuni: leggere pivot nella matrice sbagliata; non esprimere Im(T) nella base del codominio.
Aggiornamenti
Data: 2025-08-10 Breve descrizione: Aggiunto percorso LP-KI-05.